Search results for "carbon nanohorns"
showing 4 items of 4 documents
BINDING INTERACTIONS OF SMALL MOLECULES TO SURFACE OF CARBON NANOHORNS AS A ROUTE TO DRUG DELIVERY
2014
Imidazolium-Functionalized Carbon Nanohorns for the Conversion of CO2 Unprecedented Increase of Catalytic Activity after Recycling
2017
Carbon nanohorns (CNHs) were selected as a novel catalytic platform for the design of imidazolium based hybrid materials able to promote the conversion of carbon dioxide into cyclic carbonates. Several heterogeneous catalysts were prepared using a one-step procedure based on the radical polymerization of various bis-vinylimidazolium salts in the presence of pristine CNHs. The as-synthesized materials were tested for the fixation of CO2 into epoxides. The excellent catalytic performances were evaluated in terms of turnover number and productivity. The versatility of the above hybrids was proved using several epoxides as substrate. Catalysts recyclability was successfully verified for several…
Imidazolium-Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide
2016
Six new hybrid materials composed of carbon nanohorns (CNHs) and highly cross-linked imidazolium salts were easily synthesized using a one-step procedure based on the radical oligomerization of bis-vinylimidazolium salts (bVImiX) in the presence of pristine CNHs. The hybrid materials were characterized and employed as the sole catalysts for the conversion of carbon dioxide into cyclic carbonate by reaction with epoxides. The solids displayed excellent turnover number and productivity. Moreover, four catalysts were investigated in recycling experiments. Two catalysts containing an octyl linker between the imidazolium units and a bromide or an iodide anion showed no loss in activity after thr…
Sensor Properties of Pristine and Functionalized Carbon Nanohorns
2016
Nanodispersions of pristine single-wall carbon nanohorns (i.e., p-SWCNHs) and oxidized-SWCNHs (i.e.; o-SWCNHs) were used to modify screen printed electrode (SPE). p-SWCNHs and o-SWCNHs were fully characterized by using several analytical techniques, as: HR-TEM (High Resolution-Transmission Electron Microscopy), FE-SEM/EDX (Field Emission-Scanning Electron Microscopy/Energy Dispersive X-ray Analysis), Raman spectroscopy, thermogravimetric analysis, differential thermal analysis (DTA), and the Brunauer-Emmett-Teller (BET) method. The chemically modified SPEs were also characterized with Cyclic Voltammetry (CV), using several different electro-active targets. In all cases, p-SWCNHs showed bett…